8 Steps to Formal Hypothesis Testing

1. Write the claim in symbolic form and state the "opposite of the claim"

<u>**2**</u>. State the null and alternative hypotheses, H_0 and H_1

<u>**3**</u>. Determine if the test is left-tailed (<), right-tailed (>), or two-tailed (\neq) based on H₁

<u>4.</u> Identify the significance level α (and the area in two tails $\alpha/2$ if necessary)

5. Find the critical value(s) based on the area(s) in the tail(s)

<u>6</u>. Find the value of the test statistic by substituting the sample data into one of the 4 formulas (*depending on what you're testing a claim about*)

<u>7</u>: Determine if the test statistic falls inside the critical region.

State if we should: Reject H_0 OR Fail to reject H_0

 $\underline{\mathbf{8}}$: Write the formal conclusion (using the table) that connects the context of the original claim with the results from step 7.

<u>Parameter</u> <u>Being Tested</u>	<u>Requirements</u>	<u>Test Statistic</u> <u>Formula</u>
Proportion p	np≥5 and nq≥5	$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$
Mean µ	σ is unknown and normally distributed population OR σ is unknown and n > 30	$t = \frac{\overline{x - \mu}}{\frac{s}{\sqrt{n}}}$
Mean µ	σ is known and normally distributed population OR σ is known and n > 30	$z = \frac{\overline{x - \mu}}{\frac{\sigma}{\sqrt{n}}}$
Standard deviation σ or variance σ^2	normally distributed population (strict requirement)	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

<u>Condition</u>	<u>Conclusion</u>
Original claim does not include equality and you reject H ₀	"There is sufficient evidence to support the claim that(original claim)"
Original claim does not include equality and you fail to reject H ₀	"There is not sufficient evidence to support the claim that(original claim)"
Original claim includes equality and you reject H_0	"There is sufficient evidence to warrant rejection of the claim that(original claim)"
Original claim includes equality and you fail to reject H ₀	"There is not sufficient evidence to warrant rejection of the claim that (original claim)"